常微分方程求解(6)
设$n$阶常数矩阵$\mathbf{A}$中的每一元素$a{ij}\ i,j=1,\cdots,n$都是常数,则称 $$ \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{Ax} + \mathbf{f}t $$ 为常系数线性微分方程组。 我们先介绍常系数齐次方程组 $$ \frac{\m...
一阶线性微分方程组解的一般理论
我们约定向量用粗体小写字母表示,如 $\mathbf{x}$,矩阵用大写字母表示,如 $A$。该部分考试不做要求。 一、一阶微分方程组的标准形式 含有 $n$ 个未知函数 $x1t, x2t, \ldots, xnt$ 的 $n$ 个一阶微分方程构成的一阶微分方程组,如果已经解出了一阶导数 $\frac{\mathrm{d}x1}{\mathr...
常微分方程求解(5)
本文系统介绍一般线性微分方程的部分解法,包括:变量变换法(欧拉方程、降阶法、特殊变系数方程)、变动任意常数法、幂级数解法(定理、$\gamma$ 阶贝塞尔方程及其解)。 一、变量变换法 1、欧拉方程(CauchyEuler 方程) 典型形式: $$ a{0}x^{n}\frac{\mathrm{d}^{n}n}{\mathrm{...
常微分方程求解(4)
本文将系统介绍常系数线性微分方程的解法方法,分别包括二阶常系数齐次线性微分方程、$n$ 阶常系数齐次线性微分方程、以及常系数非齐次线性微分方程的解法。详细推导各步骤,便于理解和掌握。 一、二阶常系数齐次线性微分方程的解法 考虑如下方程: $$ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + a1\frac{\ma...
线性微分方程解的一般理论
一、线性微分方程 1、方程形式 我们将未知函数 $y$ 及其导数 $\frac{\mathrm{d}y}{\mathrm{d}x}, \cdots, \frac{\mathrm{d}^ny}{\mathrm{d}x^n}$ 是一次式的 $n$ 阶微分方程,称为线性微分方程。这是在应用中经常遇到的一类方程,其一般形式是: $$ \frac{\...
常微分方程求解(2)
一、全微分方程定义与性质 我们将一阶方程改写为对称的形式: $$ Mx, y\mathrm{d}x + Nx, y\mathrm{d}y = 0 $$ 如果上式的左边恰好是某一个二元函数 $ux, y$ 的全微分,即: $$ Mx, y\mathrm{d}x + Nx, y\mathrm{d}y = \mathrm{d}ux, y $$ ...
常微分方程求解(1)
一般,在一个(组)方程中,如果未知量是一个(组)函数,而且该方程中含有此未知函数的导数,则称这种方程为微分方程(组),如果在微分方程里,出现的未知函数是单个自变量的函数,我们称这一类微分方程为常微分方程。下面通过几篇文章,推导各种常微分方程的求解方法。 一、可分离变量方程 我们首先讨论已解出导数的一阶微分方程的一种特殊形式 $$ \fr...