一、不定积分的基本性质
- $$\int kf(x)dx = k \int f(x)dx$$
- $$\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$$
二、基本积分公式
1) 常数类
- $$\int 1dx = x + C \quad (\text{或} \quad \int dx = x + C)$$
- $$\int kdx = kx + C$$
2) 幂函数类
- $$\int x^{\mu}dx = \frac{x^{\mu+1}}{\mu+1} + C \quad (\mu \neq -1)$$
- $$\int \frac{1}{x}dx = \ln|x| + C$$
3) 指数函数类
- $$\int e^xdx = e^x + C$$
- $$\int a^xdx = \frac{a^x}{\ln a} + C$$
4) 三角函数类
- $$\int \cos xdx = \sin x + C$$
- $$\int \sin xdx = -\cos x + C$$
- $$\int \tan xdx = -\ln|\cos x| + C$$
- $$\int \cot xdx = \ln|\sin x| + C$$
- $$\int \sec xdx = \int \frac{1}{\cos x}dx = \ln|\sec x + \tan x| + C = \ln\left(\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right)+C$$
- $$\int \csc xdx = \int \frac{1}{\sin x}dx = \ln|\csc x - \cot x| + C=\ln\left(\left|\tan\left(\frac{x}{2}\right)\right|\right)+C$$
- $$\int \sec^2 xdx = \int \frac{1}{\cos^2 x}dx = \tan x + C$$
- $$\int \csc^2 xdx = \int \frac{1}{\sin^2 x}dx = -\cot x + C$$
- $$\int \sec x\tan xdx = \sec x + C$$
- $$\int \csc x\cot xdx = -\csc x + C$$
5) “x^{2}”类
- $$\int \frac{1}{\sqrt{1-x^2}}dx = \arcsin x + C$$
- $$\int \frac{1}{1+x^2}dx = \arctan x + C$$
- $$\int \frac{1}{\sqrt{a^2-x^2}}dx = \arcsin \frac{x}{a} + C \quad (a>0)$$
- $$\int \frac{1}{a^2+x^2}dx = \frac{1}{a}\arctan \frac{x}{a} + C$$
- $$\int \frac{1}{\sqrt{x^2-a^2}}dx = \ln |x+\sqrt{x^2-a^2}| + C$$
- $$\int \frac{1}{\sqrt{x^2+a^2}}dx = \ln |x+\sqrt{x^2+a^2}| + C$$
- $$\int \frac{1}{x^2-a^2}dx = \frac{1}{2a}\ln \left| \frac{x-a}{x+a} \right| + C = \frac{1}{2a}(\ln |x-a| - \ln |x+a|) + C$$
- $$\int \sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin \frac{x}{a} + \frac{x}{2}\sqrt{a^2-x^2} + C$$
简述:繁星
邮箱:mail@uav.edu.kg
链接:https://liyinwaihe.cn
订阅:https://liyinwaihe.cn/rss.xml
标识:https://chournal.cn/lywh/lywh.png
链接:https://hueoo.com
描述:记录生活碎片,书写独家记忆。
头像:https://hueoo.com/favicon.ico