设两列波的表达式均为:

$$ f_1(x,t) = A_1 \cos(k_1 x + \omega_1 t + \varphi_1) $$

$$ f_2(x,t) = A_2 \cos(k_2 x + \omega_2 t + \varphi_2) $$

常见叠加情况如下:

一、同频同波数同相位(完全相同的波)

$$ f(x,t) = f_1(x,t) + f_2(x,t) = A_1 \cos(kx + \omega t + \varphi) + A_2 \cos(kx + \omega t + \varphi) $$

直接合并:

$$ f(x,t) = (A_1 + A_2)\cos(kx + \omega t + \varphi) $$

二、同频同波数,不同初相位

$$ f(x,t) = A_1 \cos(kx + \omega t + \varphi_1) + A_2 \cos(kx + \omega t + \varphi_2) $$

利用余弦叠加公式:

$$ A_1 \cos\theta_1 + A_2 \cos\theta_2 = R \cos(\theta + \alpha) $$

具体推导:

$$ \theta = kx + \omega t $$

$$ f(x,t) = A_1 \cos(\theta + \varphi_1) + A_2 \cos(\theta + \varphi_2) $$

利用复数表示(欧拉公式):

$$ A_1 \cos(\theta + \varphi_1) + A_2 \cos(\theta + \varphi_2) = \operatorname{Re}\left[ A_1 e^{i(\theta + \varphi_1)} + A_2 e^{i(\theta + \varphi_2)} \right] $$

合并:

$$ = \operatorname{Re}\left[ (A_1 e^{i\varphi_1} + A_2 e^{i\varphi_2}) e^{i\theta} \right] $$

$$ A_1 e^{i\varphi_1} + A_2 e^{i\varphi_2} = R e^{i\alpha} $$

所以

$$ f(x,t) = R \cos(\theta + \alpha) = R \cos(kx + \omega t + \alpha) $$

其中

$$ R = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos(\varphi_1 - \varphi_2)} $$

$$ \tan\alpha = \frac{A_1 \sin\varphi_1 + A_2 \sin\varphi_2}{A_1 \cos\varphi_1 + A_2 \cos\varphi_2} $$

三、同频同相位,不同波数(不同波长)

$$ f(x,t) = A_1 \cos(k_1 x + \omega t + \varphi) + A_2 \cos(k_2 x + \omega t + \varphi) $$

此时不能直接合并为一个余弦,但可用和角公式写成:

利用

$$ \cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) $$

令$A_1 = A_2 = A$,$\varphi_1 = \varphi_2 = 0$,则

$$ f(x,t) = A \cos(k_1 x + \omega t) + A \cos(k_2 x + \omega t) $$

$$ = 2A \cos\left(\frac{k_1 x + \omega t + k_2 x + \omega t}{2}\right)\cos\left(\frac{k_1 x + \omega t - (k_2 x + \omega t)}{2}\right) $$

$$ = 2A \cos\left(\frac{(k_1 + k_2)x}{2} + \omega t\right)\cos\left(\frac{(k_1 - k_2)x}{2}\right) $$

四、同波数同相位,不同频率(不同周期)

$$ f(x,t) = A_1 \cos(k x + \omega_1 t + \varphi) + A_2 \cos(k x + \omega_2 t + \varphi) $$

类似方法:

$$ \cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) $$

设$A_1 = A_2 = A$,$\varphi_1 = \varphi_2 = 0$,则

$$ f(x,t) = A \cos(k x + \omega_1 t) + A \cos(k x + \omega_2 t) $$

$$ = 2A \cos\left(k x + \frac{\omega_1 + \omega_2}{2} t\right) \cos\left(\frac{\omega_1 - \omega_2}{2} t\right) $$

五、不同波数、不同频率(形成拍或更复杂干涉)

一般形式:

$$ f(x,t) = A_1 \cos(k_1 x + \omega_1 t + \varphi_1) + A_2 \cos(k_2 x + \omega_2 t + \varphi_2) $$

无法简化为单一正弦函数,但可以表达为两个正弦的叠加。若$A_1 = A_2 = A$且$\varphi_1 = \varphi_2 = 0$,可用和角公式:

$$ f(x,t) = 2A \cos\left(\frac{(k_1 x + \omega_1 t) + (k_2 x + \omega_2 t)}{2}\right) \cos\left(\frac{(k_1 x + \omega_1 t) - (k_2 x + \omega_2 t)}{2}\right) $$

$$ = 2A \cos\left(\frac{(k_1 + k_2)x + (\omega_1 + \omega_2)t}{2}\right) \cos\left(\frac{(k_1 - k_2)x + (\omega_1 - \omega_2)t}{2}\right) $$

打赏
评论区
头像
文章目录