一、空间曲线的切线与法平面

1、曲线为参数方程表示

设空间曲线$C$的参数方程为:

$$ \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} $$

其中$t$为参数。其切向量为:

$$ \vec{r}'(t) = \left( \frac{\mathrm{d}x}{\mathrm{d}t},\ \frac{\mathrm{d}y}{\mathrm{d}t},\ \frac{\mathrm{d}z}{\mathrm{d}t} \right) $$

曲线在点$P(x_0, y_0, z_0)$处的切线方程若$t_0$对应$P$,则切线的方向向量为$\vec{r}'(t_0)$,其参数方程为:

$$ \begin{cases} x = x_0 + \frac{\mathrm{d}x}{\mathrm{d}t}\bigg|_{t_0} \cdot s \\ y = y_0 + \frac{\mathrm{d}y}{\mathrm{d}t}\bigg|_{t_0} \cdot s \\ z = z_0 + \frac{\mathrm{d}z}{\mathrm{d}t}\bigg|_{t_0} \cdot s \end{cases} $$

或对称式为:

$$ \frac{x - x_0}{\frac{\mathrm{d}x}{\mathrm{d}t}\big|_{t_0}} = \frac{y - y_0}{\frac{\mathrm{d}y}{\mathrm{d}t}\big|_{t_0}} = \frac{z - z_0}{\frac{\mathrm{d}z}{\mathrm{d}t}\big|_{t_0}} $$

曲线的法平面指过曲线某点且垂直于切线的平面,若切线方向向量为$\vec{v} = (a, b, c)$,则法平面的法向量也是$\vec{v}$,法平面方程为:

$$ a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 $$

其中$(x_0, y_0, z_0)$是曲线上的点。

2、曲线为一般方程表示

设空间曲线$C$由

$$ \begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases} $$

确定。

曲线上的切向量可以由梯度$\nabla F$和$\nabla G$的叉积给出:

$$ \vec{v} = \nabla F \times \nabla G = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{vmatrix} $$

或者使用雅可比行列式:

$$ \vec{v}=\left(\frac{\partial(F,G)}{\partial(y,z)},\frac{\partial(F,G)}{\partial(z,x)},\frac{\partial(F,G)}{\partial(x,y)}\right) $$

若$P(x_0, y_0, z_0)$为曲线上的点,则切线参数方程为:

$$ \begin{cases} x = x_0 + v_1 t \\ y = y_0 + v_2 t \\ z = z_0 + v_3 t \end{cases} $$

其中$\vec{v} = (v_1, v_2, v_3)$为上述的切向量。

法平面是同时过$P(x_0, y_0, z_0)$且分别以$\nabla F$和$\nabla G$为法向量的两个平面的交集。即:

$$ \begin{cases} F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0 \\ G_x(x_0, y_0, z_0)(x - x_0) + G_y(x_0, y_0, z_0)(y - y_0) + G_z(x_0, y_0, z_0)(z - z_0) = 0 \end{cases} $$

或理解为过点$P$,且其法向量垂直于切向量$\vec{v}$的所有平面。

二、空间曲面的切平面与法线

1、曲面为一般方程表示

设空间曲面$S$由标量函数$F(x, y, z) = 0$给出。

曲面上某点的法向量为梯度向量:

$$ \vec{n} = \left( \frac{\partial F}{\partial x},\ \frac{\partial F}{\partial y},\ \frac{\partial F}{\partial z} \right) $$

曲面在点$P(x_0, y_0, z_0)$处的切平面的法向量为$\vec{n}_0 = \left( F_x, F_y, F_z \right)|_{P}$,其方程为:

$$ F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0 $$

法线为通过$P(x_0, y_0, z_0)$且方向为$\vec{n}_0$的直线,其参数方程为:

$$ \begin{cases} x = x_0 + F_x(x_0, y_0, z_0)\, t \\ y = y_0 + F_y(x_0, y_0, z_0)\, t \\ z = z_0 + F_z(x_0, y_0, z_0)\, t \end{cases} $$

2、曲面为参数方程表示

设空间曲面$S$由参数方程

$$ \begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases} $$

给出。

在参数点$(u_0, v_0)$处,分别计算:

$$ \vec{r}_u = \left( \frac{\partial x}{\partial u},\ \frac{\partial y}{\partial u},\ \frac{\partial z}{\partial u} \right) $$

$$ \vec{r}_v = \left( \frac{\partial x}{\partial v},\ \frac{\partial y}{\partial v},\ \frac{\partial z}{\partial v} \right) $$

则法向量为

$$ \vec{n} = \vec{r}_u \times \vec{r}_v $$

其行列式形式为:

$$ \vec{n} = \begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k} \\\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}\end{vmatrix} $$

若$P(x_0, y_0, z_0)$为对应$(u_0, v_0)$的点,则切平面方程为

$$ n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0 $$

其中$\vec{n} = (n_1, n_2, n_3)$。

法线过点$P(x_0, y_0, z_0)$,方向为$\vec{n}$,其参数方程为

$$ \begin{cases} x = x_0 + n_1 t \\ y = y_0 + n_2 t \\ z = z_0 + n_3 t \end{cases} $$

打赏
评论区
头像
文章目录